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The optimisation data is presented in Fig. 2 wherein Nap, 
obtained by solving equation (9) is plotted against E for a 
range of values of G. With the aid of Fig. 2, the optimum 
dimensioned fin for a specified heat generation can be readily 
designed allowing for thermal conductivity variation. 
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NOMENCLATURE 

A, B, dimensionless parameters; 
C,,, C13,constants; 

specitic heat of the fluid; 
Bessel functions; 
coefficients of evolution of temperature field; 
total heat flow ; 
ideal heat flow ; 
= r/rO, dimensionless radius, co-ordinate; 
radius, co-ordinate; 
radius of porous board; 
temperature of fluid; 
temperature of incoming fluid; 
temperature of porous material; 
temperature of circumference of porous board; 
specific mass throughflow ; 
= zJro, dimensionless co-ordinate; 
co-ordinate; 
= zo/r,, dimensionless height of porous board; 
height of porous board. 

Greek symbols 

a, coefficient of heat transfer; 
aI, zero points of function J,; 

8, specific area of heat transfer; 
Y? = I.,J,$, rate of orthotropy ; 

0 S, dimensionless temperature of porous material ; 
0 
n,l’ 

dimensionless temperature of fluid ; 
roots of characteristic polynome; 

I,, ,I,, thermal conductivities in axial and in radial 
directions ; 

A, component of temperature field ; 
cp, co-ordinate. 

INTRODUCTION 

THE HEAT exchangers of porous materials are of importance 
in number of applications, for example in an effective 
utilization of enthalpy of outgoing gaseous helium in 
throughflow cryostats, in refrigerators making use of dis- 
solution of 3He in 4He [ 11. 

This article presents a solution of stabilized temperature 
fields in a orthotropic porous material of cylindrical shape, 
thermally connected by its circumference to a body with 
temperature T,,. It can be higher or lower than the tempera- 
ture of incoming cooling (warming) medium T,,, flowing only 
in axial direction through the porous material (Fig. 1). 

The solution is found on the following assumptions: 
(a) The geometrical and physical parameters are axially 

symmetrical. 
(b) We regard the porous substance as a continuous and 

homogeneous environment (i.e. neglecting the microstruc- 
ture). 

(c) The heat is brought in solely by the outer circumference 
of the porous board, and removed by a transfer into the fluid, 
or conversely. 
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FIG. 1. A schematical section through the exchanger being 
studied, with a denotation of the co-ordinates r, z and the 

direction of the flow of the fluid and of the heat. 

(d) The fluid thermal conductivity is negligible in com- 
parison to the solid thermal conductivities 1, and I, 

(e) Within the respective temperature intervals, thermal 
conductivity, the heat-transfer coefficient and the specific heat 
are regarded as constants [2]. When the coefficients change 
considerably, the presented case can be used as a first 
approximation of the iterative procedure. 

DEDUCTION OF ELEMENTARY EQUATIONS 

The solution is carried out in cylindrical co-ordinates. In 
view ofcondition (a) the temperature fields are independent of 
co-ordinate cp. In the verbal description we shall assume that 
T,, > T/,, i.e. that flowing fluid draws heat from the porous 
substance. In opposite case the same relations hold of course 
good. 

We can derive elementary equations if we compare heat 
conduction in a porous substance caused by a temperature 
gradient, heat transfer to the fluid and heating of flowing fluid 
[3]. We express them in dimensionless form. We define 
dimensionless temperatures by equations 

O,(R,Z) = 
T,(R,Z)- T'o 

To- T/o 
(1) 

T,(R>z)- r,o 
O,(R,Z) = pp. 

7;o - T,o 
(2) 

The elementary equations have the dimensionless form 

a2 

1 a@,@, Z) 
-+RR+yaZL O,(R,Z)=A---- 

az ’ 
(3) 

d@,(R, Z) 
___ = B[O,(R,Z)-O/(R,Z)], 

az 
(4) 

where 

A=__-, B=f!!$ y=‘- WC&JO 
(5) 

4 WC, 2, 

are dimensionless parameters. 
The boundary conditions appertaining to equations (3) and 

(4) are 
O&Z) = 1, (6) 

awe 0) a@,(R, zd 
-= 

az az = 
0, (7) 

O,(R,O) = 0, (8) 

where (6) reflects the constant temperature of the circumfer- 
ence of the porous board, (7) secures the zero flux of heat 
across the upper and lower boundaries of the porous 
substance, and (8) determines the temperature of the incom- 
ing fluid. 

ANALYTICAL SOLUTION 

From equations (3) and (4) a homogeneous equation for a 
single temperature function can be derived: 

a3 a3 i 2* a2 a2 

~+Yd23+------ a@ az +B$F+yBz RaRaZ ‘ 
? 

+f;-AB; O,(R,Z)=O. 1 (9) 

By a solution (9) via a separation of the variables we can 
obtain [3] the expression of the temperature field in a porous 
substance 

O,(R, Z) = 1 - ; K,J,(a,R) 

,=1 

x [elIi’ + Cl2 2”” + C,, e”3z]. (10) 

From the boundary conditions we can determine the 
values of the constants which appear in relationship (10). If 
condition (6) is to be complied with, all the terms of the sum 
must be zero for R = 1, i.e. a, are the zero points of the Bessel 
function of the zero order 

J&J = 0. (11) 

We consider only the positive values u,. The constants Iri 
are the roots of a characteristic polynome which was 
produced by the solution of equation (9) by separation of the 
variables: 

$.; +yBAf - (LX; + AB)r$ - cc:E = 0. (12) 

If we require fulfilment of (7) in respect of each term of the 
sum in (lo), this condition will lead to an algebraic system of 
equations for constants Clz and Cl3 

The last unknown constants shall be determined from 
condition (8), which has however been formulated for a 
different temperature function. 

From (3) and (4) it follows that 

= -ABO,(R,Z), (14) 

hence according to (8) for Z = 0 the following applies 

i a a2 
-+RaR+ydZZ-AB O,(R,O)=O. 

1 
(15) 

Equation (15) is a boundary condition equivalent to (8), but 
formulated for function 0, 

After substituting (10) to (15) and using completeness and 
orthogonality of the Bessel functions J,(a, R) we can derive 
expression [3,4] 

2AB 

where 

4,(Z) = (a: - y1!, + AB) eitLZ + C,,(c$ -yLF, + AB) eilzz 

+ C,,(c$ - y$, + AB) eLfaZ. (17) 

The temperature field in a porous substance is fully de- 
termined now. 

By substituting (10) into (14) we shall obtain the analytical 
expression of temperature field in the fluid passing through 

@,(RZ) = 1 - ; ; K,MZ)J,(a,R). (18) 
1=, 

From the temperature field in the porous substance (10) we 
can also express a total flow of the heat drawn by the 
exchanger 

0 = 2nre&G- T,,) 2 GGJ1(a,) 
1=* 

X 
s 

i% 
[&I” + C,* &IL’ + C,, eiz3q dZ. (19) 

0 
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FIG. 2. Temperature fields in the fluid at different through- 
flows expressed by means of dimensionless isotherms 
0, = const. The situation corresponds to r0 = 25mm, 

z0 = 8 mm, 7 = 0.2, AB = c$r,$, = 560 = const. 

This flow can be compared with an ideal off-take of heat 
when the fluid that passed through will reach the tempera- 
ture T,,. To this corresponds the heat flux drawn off 

Qo = “Mr,(T,, - T,,). (20) 

By comparing the heat flows 0 and Q. we can judge exactly 
in how far the fooling capacity of the fluid passing through 
has been exploited. 

NUMERICAL SOLUTION 

The above relations for the temperature fields have been 
calculated on an HP 9830A calculator, using the first twelve 
terms with a correction for the rest of the series. 

If B >> 1 the temperature of fluid is practically equal to the 
temperature of the porous material in the whole volume 
except the layer at the plane 2 = 0 with thickness of the order 
B-‘. If we change CI and j? (B >> 1 and other parameters are 
constants) the new temperature fields are practically the same 
except thin layer at Z = 0. If B >> 1 only refining of porous 
material cannot improve the quality of exchanger. 

Figure 2 indicates the calculated temperature fields by 
means of isotherms in the fluid with different flows. From the 
diagrams it is clear that with the throughflow increasing (i.e. 
the A growing), the temperature of the central portion de- 
creases and the isotherms become denser. The change of B in 
the interval B > 30 does not move practically the isotherms 
on this oictures. 
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FIG. 3. Dependences of dimensionless temperature 0, of the 
porous board at its centre (R = 0) on the co-ordinate Z for 
different anisotropies of the porous material y = &ii.,. Tem- 
perature of fluid 0, i 0,. The dependences correspond to 

A = 0.28, B = 2000,1, = 25 W/mK. 

In Fig. 3 there are plotted the dependences of the dimen- 
sionless temperature 0, in the direction of the flow of the fluid 
in the centre of the porous board for different axial thermal 
conductivities I,, i.e. for different orthotropies of thermal 
conducting y = &/A,. Assuming a low y and a good heat 
transfer, the temperature of the fluid that passed comes much 
closer to the highest possible T,, temperature than in the case 
of isotropic material. This is due to the fact that for small 
values of y the temperature of a porous substance for Z = Z, 
is closer to the T,, temperature. The effect of y on the 0, 
isotherms for 0 < R < 1 is shown in the informative picture in 
the Fig. 3. 

CONCLUSIONS 

The above-described method of calculation of temperature 
fields in porous substance as in fluid permits to determine the 
temperature curves for various geometrical and physical 
parameters. It is practicable to respect the anisotropy of 
porous materials as well as the cases where there are rather 
significant differences between the temperature of the fluid 
and that of the porous substance throughout the whole 
volume of the porous material. The whole situation can be 
characterized by three dimensionless parameters. From the 
calculated relations it follows that the highest efficiency is 
reached with a high radial value and a low axial value of 
thermal conductivity of the material of the porous board. The 
results of the method are used for an optimization of heat 
exchangers designed for throughflow-type helium cryostats. 
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